
A Compiler-Interpreter-System for Decoding the User's
Intention Within a Speech Understanding Application

Michael Ebersberger, Johannes Müller, Holger Stahl

Institute for Human-Machine-Communication, Munich University of Technology
Arcisstraße 21, D-80290 Munich

email: {ebe,mue,sta}@mmk.e-technik.tu-muenchen.de

Abstract: For a speech understanding graphic editor, a compiler-interpreter-system is
introduced to process a semantic structure, a special form for representing the semantic
content of a spoken utterance. After a semantic structure has been converted to database
queries by the compiler, the interpreter processes all these queries and updates the cor-
responding database, i.e. in our case the graphics data base containing the features of all
objects on the screen. The system has been tested with 1843 semantic structures of spo-
ken utterances within the ’graphic editor’ domain. The rate for correct database queries
is 97.3%. Storage of the whole domain-specific knowledge in external and editable files
enables easy portability to other domains.

1 Introduction

To demonstrate a speech understanding system, we implemented a speech understand-
ing graphic editor, which allows the user to create, modify or delete three-dimensional
objects such as cones, cuboids, cylinders or spheres only by spoken commands. The
system reacts upon a spoken input by a graphic output on the screen and synthetic
speech. The speech signal is recorded and preprocessed to an observation sequence O.

By maximizing the conditional probability [7][8], the semantic decoder com-
putes the most probable semantic structure S, which is used to find the user’s intention
I. Subsequently, operations on a graphic database are performed. The data of all objects

Fig. 1: Block diagram of the application ‚speech understanding graphic editor‘

shown on the screen are saved in
this database and used to gener-
ate a pixel sequence, which is
displayed on the screen. Further-
more, the database provides the
possibility to pass textual infor-
mation, which is given out by
synthetic speech. Fig. 2: Semantic structure S of an utterance

Semantic
Decoder

Intention
Decoder

Acoustic
Preproc.

speech signal

Graphics
Creation

graphicssemantic
structure S

intention Iobservation
sequence O

word chain W

Speech
Synthesis

P S O()

S:

quantTra
20mm

direction
down

form
sphere

cmdMove
void

number
1

The semantic structure as semantic representation of a spoken or written utterance
forms the input of the intention decoder. The user‘s utterance "move the sphere two cen-
timetres downwards" is transformed by the semantic decoder into the semantic struc-
ture S, which is depicted in figure 2. In general, a semantic structure has the following
characteristics [3]:

• The semantic structure S is a tree consisting of a finite number N of semantic units
(simply called semuns) sn:

• Each semun sn has a type t[sn] and a value v[sn]. It can be drawn as .

• Each semun sn refers to a certain number (depending on t[sn]) of successor se-
muns , connected by edges " ".

• The blank-semun ’blk’ forms an exception. It represents a leaf of the tree, drawn as
" ". It has the type , no value and no successor.

2 General Approach for the Intention Decoder

For decoding the user’s intention, i.e. the execution of the desired actions, a combina-
tion of compiler and interpreter is suggested. The preprocessed semantic structure
forms the source language PQ for the compiler. It represents the intention of the user to
manipulate graphic objects. The result of the compiler is a program in the intermediate
language PI, which has especially been designed for that purpose. This intermediate
language provides commands for arithmetic operations, control of data flow and data-
base operations. The interpreter executes the instructions of the intermediate language
by loading object data from the database, modifying these data and storing data of new
objects into the database.

Before using this system, a system administrator describes each semun with commands
of the intermediate language PI. The semun and the commands represent the same in-
formation. Additional semuns can be easily integrated at a later stage. (The use of a da-
tabase language like SQL [5] is possible, too. For that reason, this article describes nei-
ther the structure of the intermediate language nor the functioning of the interpreter).

3 Preprocessor

Before a semantic structure is executed by the compiler-interpreter-system, it is possi-
bly simplified or split by a relational preprocessor [1]. To keep the intermediate lan-
guage simple, to minimize the compilation time and to reduce the instruction complex-
ity, the preprocessor can split a semantic structure at special places, which represent for
example the combination of two attributes or actions. The semantic structure of "create
a sphere and a cube" is divided into two semantic structures corresponding to "create a
sphere" and "create a cube". The semun representing the "and" was eliminated.

Fig. 3: Block diagram of the intention decoder as compiler-interpreter-system

S s1 s2 … sn … sN, , , , ,{ }=
t [sn]
v [sn]

X 1≥
q1 sn[] … qX sn[] s2 … sN blk, , ,{ } \ sn{ }∈, ,

t blk[] blk=

Compiler Interpreter
⇒ programm in

interm. language PI

⇒ program in
source language PQ

⇒ modified
data base

Prepro-
cessor

preprocessed
sem. structures

semantic
structure S intention Idatabase query

language

4 Compiler

The input program of the compiler (in source language PQ) consists of one or more se-
mantic structures. These semantic structures can only be transformed in database ac-
tions, if the context sensitivity of natural language has been eliminated.

4.1 Contextual Sensitivity

The following two word chains may introduce the problem of context sensitiveness.
• W1: "move a sphere above the cone to the right"

The system has to find a sphere in the database, which should be moved.
• W2: "paint a sphere"

The sphere is an attribute of a new object. The system must not search for that sphere.

In both cases, "sphere" is represented by the same semun. Only the context of the word
gives some advice about the meaning. For that reason, the status model and the status
transition model are established to describe the context of a semun.

4.2 Status Model

For each semun sn, a status z[sn] is introduced. The number of all
possible states is described in a status model. Within the ’graphic
editor’ domain, we defined five different states:

• The cmd-status is the command status of a semantic structure.
• The new-status collects attributes for a new object.
• The what-status searches for objects in the database.
• The how-status integrates new attributes for already existing objects.
• The how-much-status collects quantitative information.

4.3 Status Transition Model and Status Analysis

Each semun is understood as a status transition machine, which switches to a following
status considering the type, the status and the successors of that semun. The sequence of

During the status analysis, the status of each semun sn within S has to be examined. For
that purpose, the status transition model is used. The whole semantic structure is proc-
essed and the actual status for each semun is extracted. The actual semun status repre-
sents the actual context of this semun.

states is described in the status transition
model for all combinations of any type
and any status. If the semun with the type
"cmdMove" has got the status "cmd", its
first successor-semun gets the status
"what" (objects are searched by the sys-
tem), its second successor-semun gets the
status "how" (how are the objects manipu-
lated), and the third successor gets the sta-
tus "how-much" (which quantity of objects
are manipulated). Fig. 4: Example for a status transition

t [sn]
v [sn]
z [sn]

cmdMove
void
cmd

. . .

. . .
what

. . .

. . .
how

. . .

. . .
how-much

successor semun

status transition

successor status

origin status
origin semun

4.4 Production of Intermediate Code

The knowledge of each semun about its context is used to receive a new representation
of the semantic structure. With the parameters type t[sn], value v[sn] and status z[sn],
each semun sn is transformed into certain commands, which are stored in a command
model. In this model, each semun is linked with a series of commands, called basic
commands, which can be processed by the interpreter. The semantic structure is trans-
formed into a basic command tree, which has to be linearized before being processed
by the interpreter. The execution of the commands modifies the actual knowledge of the
system, which consists of a number of variables.

4.5 System Knowledge

Whereas the compiler uses the system knowledge for common operations, the inter-
preter modifies the system knowledge by executing basic commands. The system
knowledge is actualized until the whole basic command tree is processed. The system
knowledge consists of two types of variables:

• Internal variables cannot be defined by the user. The system itself manages the han-
dling of theses variables. For example, the result of searching operations is stored in
internal variables.

• External variables can be defined by the user and are needed for the calculations.
For example, the utterance "move the cylinder to the right" does not mention how far
the cylinder has to be moved, thus the system uses external variables as defaults.

4.6 Linearizing the basic command tree by a "top-up" approach

The basic command tree has to be linearized for the interpreter. To determine the status
z[sn] of each semun sn, the basic instruction tree has to be processed "top-down" using
the status transition model. However, commands can only be generated "bottom-up"
[2], since basic commands in lower levels of the tree include some information, which
is used in higher levels. Therefore a combination of both methods is used "top-up".
Note in fig. 6 the three main steps ’DESCEND’ for descending the semantic structure,
’CONSTRUCT’ for constructing the linearized commands and ’FINISH’ for terminating.

5 Results

The intention decoder has been tested with 1843 semantic structures of spoken utter-
ances, which have been collected from 33 subjects during a Wizard-of-Oz simulation
within the ’graphic editor’ domain [4]. For the corresponding semantic structures, the
rate for correct database queries amounts to 97.3%. It is impossible to reach 100%,
since the execution of a language representation becomes more complex, the closer to
natural language that representation is located [6]. In fact, the semantic structure claims
to be close to the word level [3]. Due to the universality of the interpreter commands
and the status analysis, as well as the storage of domain-specific knowledge in external
files, the portability of the intention decoder to other domains is easily possible.

Fig. 5: Determination of the basic commands by the command model

semun type t [sn]
command model

sequence of
basic commandssemun value v [sn]

semun status z [sn]

6 Acknowledgement

An online ’graphic editor’ including the described intention decoder for German text
input is running on WWW. If you try it, please be aware of out-of-vocabulary errors.
The internet-address is: http://www.mmk.e-technik.tu-muenchen.de/~mue/nasgra/

References

[1] A. Aho, R. Sethi, J.D. Ullmann: Compilerbau, Addison Wesley, 1988
[2] L. Goldschlager, A. Lister: Informatik: Eine moderne Einführung, Hanser, 1990
[3] J. Müller, H. Stahl: Die semantische Gliederung als adäquate semantische Repräsentati-

onsebene für einen sprachgesteuerten ‚Grafikeditor‘, in L. Hitzenberger (ed.): Angewandte
Computerlinguistik, „Sprache und Computer“ (No. 15), Georg Olms, 1995, pp. 211-225

[4] J. Müller, H. Stahl: Collecting and Analyzing Spoken Utterances for a Speech Controlled
Application, Proc. Eurospeech 1995 (Madrid, Spain), pp. 1437-1440

[5] D. Petkovic: SQL die Datenbanksprache, McGraw-Hill, 1990
[6] R. Pieraccini, E. Levin, E. Vidal: Learning how to Understand Language, Proc. Eurospeech

1993 (Berlin, Germany), pp. 1407-1412
[7] H. Stahl, J. Müller: A Stochastic Grammar for Isolated Representation of Syntactic and Se-

mantic Knowledge, Proc. Eurospeech 1995 (Madrid, Spain), pp. 551-554
[8] H. Stahl, J. Müller, M. Lang: An Efficient Top-Down Parsing Algorithm for Understanding

Speech by Using Stochastic Syntactic and Semantic Models, Proc. ICASSP 1996 (Atlanta,
USA), pp. 397-400

Fig. 6: Flowchart for linearizing the basic command tree

goto the
predecessor-semun

fetch status and

and overlay them

no

yes

context from stack

execute commands
for that status

on the interpreter

yes
no

initialize

take an unprocessed
semun with its status

on
ly

 b
la

nk
 s

uc
ce

ss
or

s
ex

is
t

save status and
context onto stack

END

no

yes

does

 have non-blank
successors

this semun

?

are
there unpro-

cessed, non-blank
successors

root semun
reached ?

step: FINISH

?

START

execute commands
on the interpreter

step: CONSTRUCT

pay attention to
status transitions

delete
context

step: DESCEND

